Chem. Ber. 119, 991-1015 (1986)

Steuerungsmöglichkeiten bei der übergangsmetallkatalysierten Umsetzung von 1,3-Dienen mit Kohlendioxid

Arno Behr^{a*}, Ren He^a, Klaus-D. Juszak^a, Carl Krüger^{b**} und Yi-Hung Tsay^{b**}

Institut für Technische Chemie und Petrolchemie der Technischen Hochschule Aachen^a, Worringer Weg 1, D-5100 Aachen, und

Max-Planck-Institut für Kohlenforschung^b, Kaiser-Wilhelm-Platz 1, D-4330 Mülheim (Ruhr)

Eingegangen am 16. August 1985

Die Umsetzung von Butadien mit Kohlendioxid führt bei Einsatz homogener Palladium-, Ruthenium- und Nickelkomplex-Katalysatoren in Ausbeuten bis zu 59% zum Co-Lacton 2-Ethyliden-6-hepten-5-olid (3). Mit Rhodiumkatalysatoren wird die Reaktion umgesteuert, und drei Moleküle Butadien verknüpfen sich mit Kohlendioxid unter Bildung des C13-Lactons 2-Ethyl-2,4,9-undecatrien-4-olid (10). Dieses C_{13} -Lacton kann auch rhodiumkatalysiert aus dem C₉-Lacton und Butadien hergestellt werden. - Bei der C₉-Lacton-Synthese werden die herausragenden Steuerungseigenschaften der Trialkylphosphane mit CHR2-Substituenten am Phosphor über eine Aktivierung des Kohlendioxids durch den Liganden interpretiert. Eine analoge Aktivierung wird bei Zusatz von Phosphor- und Arsen-Ylidliganden beobachtet. Als mechanistische Zwischenstufen der Butadien/CO2-Reaktion werden Übergangsmetall-Allyl- und Carboxylat-Spezies angenommen. Ausgehend vom C9-Lacton konnte ein Carboxylat-Komplex, Bis(2-ethyliden-4,6-heptadienoato)bis(triisopropylphosphan)palladium (22), isoliert und durch Röntgenstrukturanalyse vermessen werden. Dieser Komplex ist gleichzeitig ein guter Einkomponentenkatalysator für die Butadien-CO2-Reaktion. – Isopren bzw. Piperylen können gemeinsam mit Butadien und Kohlendioxid zu δ-Lactonen (32, 34, 36), verknüpft werden. Die Insertion des Kohlendioxids erfolgt dabei jeweils in die Allylgruppe, die sich aus dem Butadien bildet.

Possibilities of Controling Transition Metal-catalyzed Reactions of 1,3-Dienes with Carbon Dioxide

The reaction of butadiene with carbon dioxide using homogeneous palladium, ruthenium, and nickel catalysts affords the C₉-lactone 2-ethylidene-6-hepten-5-olide (3) in yields up to 59%. In contrast, rhodium catalysts give rise to the formation of the C₁₃-lactone 2-ethyl-2,4,9-undecatrien-4-olide (10) by connection of three molecules of butadiene with carbon dioxide. The C₁₃-lactone can also be synthesized by the rhodium-catalyzed reaction of the C₉-lactone with butadiene. — Trialkylphosphines containing a CHR₂-group bound to the phosphorus and phosphorous or arsenic ylides proved to be extraordinarily effective and selective ligands in the synthesis of the C₉-lactone. This effect is interpreted by an activation of carbon dioxide by means of the ligand. In the reaction of butadiene with CO₂, allyl and carboxylate complexes of the transition metals are proposed to be the mechanistic intermediates. In fact, the carboxylate complex bis(2-ethylidene-4,6-heptadienoato)bis(triisopro-

** Röntgenstrukturanalyse

[©] VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1986 0009-2940/86/0303-0991 \$ 02.50/0

pylphosphane)palladium (22) was isolated by a stoichiometric reaction starting with the C₉lactone. This complex, of which the structure was determined by X-ray analysis, proved to be an excellent one-component catalyst in the reaction of butadiene and CO₂. – Isoprene and piperylene can be linked up with butadiene and carbon dioxide yielding new δ -lactones (32, 34, 36). The insertion of carbon dioxide takes place at the allyl group which is formed by the butadiene.

Kohlendioxid wird bereits seit langem als Reaktand bei organischen Synthesen verwendet, so z. B. bei der Darstellung von Harnstoff oder bei der Synthese aromatischer Carbonsäuren nach dem Kolbe-Schmitt-Verfahren¹⁾. Die bisher sehr beschränkte Nutzung des Kohlendioxids als Synthesebaustein wurde in den letzten Jahren wesentlich bereichert durch Arbeiten auf dem Gebiet der übergangsmetallkatalysierten Reaktionen des Kohlendioxids²⁾. Sowohl Alkene³⁾, Alkine⁴⁻⁶⁾, Methylencyclopropane⁷⁾ und Allen⁸⁾ als auch 1,3-Diene⁹⁻¹³⁾ sind in der Lage, unter C-C-Verknüpfung mit Kohlendioxid zu reagieren, wenn Metallkomplexe der Nebengruppe VIII, speziell des Palladiums, Rhodiums und Nickels, als Katalysatoren verwendet werden.

In der vorliegenden Arbeit wurde die Umsetzung von 1,3-Dienen mit Kohlendioxid genauer untersucht mit dem Ziel, Einblicke in die Steuerungsmöglichkeiten und in den Mechanismus dieser Reaktion zu erlangen. Dazu wurden sowohl das Katalysatormetall und die Ligandensphäre als auch das 1,3-Dien variiert und der Einfluß auf Aktivität und Selektivität der Umsetzung verfolgt.

Umsetzungen von Butadien mit Kohlendioxid

Die Reaktion des Butadiens mit Kohlendioxid führt — je nach Katalysatormetall — zu unterschiedlichen Produkten. Schema 1 zeigt, daß ausgehend vom Übergangsmetallkomplex ML_x mehrere Katalysecyclen existieren, die teilweise miteinander verknüpft sind.

Cyclus A ist auf Palladium-, Ruthenium- und Nickelkatalysatoren anzuwenden. Bei Einsatz von Palladiumkomplexen wurden die mit Abstand besten Ergebnisse erzielt. Unter verknüpfender Addition von zwei Butadien-Molekülen bildet sich der Bis- η^3 -allyl-Komplex 1. Kohlendioxid insertiert in eine Allylbindung, und es entsteht der Allylcarboxylat-Komplex 2, aus dem sich unter Rückbildung des Katalysators ML_x die in der Literatur⁹⁻¹² schon beschriebenen Produkte 3–7 freisetzen können. Durch Ringschluß entstehen das δ -Lacton 2-Ethyliden- δ -hepten-5-olid (3) sowie die γ -Lactone 4 und 5; durch Addition zweier weiterer Butadien-Moleküle erhält man die Ester 6 und 7^{14,15}.

Cyclus B wird bei Einsatz von Rhodiumkatalysatoren beschritten. Drei Moleküle Butadien lagern sich an das Metall an und bilden Komplex 8, der mit Kohlendioxid zur Zwischenstufe 9 weiterreagiert, aus der das γ -Lacton 10 resultiert¹⁶).

Cyclus C beschreibt eine Variante der Reaktion, die ebenfalls durch Rhodiumkomplexe katalysiert ist. Rhodiumverbindungen sind in der Lage, das δ -Lacton 3 unter Ringöffnung zu binden und gleichzeitig ein weiteres Molekül Butadien zu koordinieren. Es entsteht Komplex 11, der unter C-C-Verknüpfung die schon beschriebene Zwischenstufe 9 bildet, die die Ausgangsstufe für das γ -Lacton 10 darstellt.

Schema 1

Im folgenden werden die drei verschiedenen Cyclen detaillierter betrachtet und die Möglichkeiten beschrieben, mit Hilfe der homogenen Übergangsmetallkatalyse die einzelnen Reaktionen im Hinblick auf Ausbeute und Selektivität zu steuern.

Steuerungsmöglichkeiten im Cyclus A

Für den Cyclus A ist es von besonderer Bedeutung, wirksame Maßnahmen zur Steuerung der Umsetzung von Butadien mit Kohlendioxid zu finden, da sich aus der Zwischenstufe 2 die unterschiedlichsten Endprodukte bilden können. Die beste Einflußnahme verläuft über den Katalysatorkomplex ML_x , der in der vorliegenden Arbeit meist in situ aus einer Metallkomponente und einem Liganden L hergestellt wurde. Diese Art der Katalysatorpräparierung läßt eine breite Variation des Ausgangssystems ML_x zu.

Im Fall der Palladiumkatalyse wurde Palladiumbis(acetylacetonat) als Metallkomponente ausgewählt, da von diesem Komplex von zahlreichen Oligomerisierungs-¹⁷⁾ und Telomerisierungsreaktionen¹⁸⁾ her bekannt ist, daß die Acetylacetonatliganden leicht durch andere Liganden verdrängt werden können.

Als Liganden wurden zahlreiche Phosphorverbindungen, wie z.B. Phosphane, Phosphanoxide, Phosphite und Phosphorane, eingesetzt. Daneben wurden auch Arsane, Stibane, Bismutane sowie sauerstoff- und stickstoffhaltige Verbindungen als Liganden untersucht.

Als mit Abstand günstigste Liganden erwiesen sich Phosphane. In Tab. 1 sind einige typische alkyl- bzw. arylsubstituierte Mono- und Diphosphane zusammen mit den erzielten Ausbeuten an Butadien-Kohlendioxid-Produkten (bezogen auf eingesetztes Butadien) aufgeführt.

Licond					
Ligand	3	4	5 ິ	6	7
PiPr ₃	43.9	0.3	0.1	0.6	0.9
PCy ₃	38.6	0.1	-	0.5	0.9
PCp ₃ ^{a)}	15.4	1.5	-	0.2	0.2
dcpe ^{b)}	10.5	0.1	-	2.8	1.9
PEt	4.0	0.3	01	5.3	69
PPr ₁	3.1	0.6	0.2	6.9	80
PBu ₂	3.0	0.1		5.9	8.6
PMe ₁	2.6		0.1	8.6	9.9
PPh ₃	1.7	0.4	0.3	5.6	6.7
dppe ^{c)}	0.4	0.1		2.5	3.5
Pt Bu	0.3	2.7	_	0.1	0.1

Tab. 1. Einfluß der Phosphanliganden auf die Palladium-katalysierte [Pd(acac)₂] Umsetzung von Butadien mit Kohlendioxid

^{a)} $PCp_3 = Tricyclopropylphosphan. - ^{b)} dcpe = Bis(dicyclohexylphosphino)ethan. - ^{c)} dppe = Bis(diphenylphosphino)ethan.$

Die untersuchten Liganden lassen sich in zwei deutlich unterschiedliche Gruppen unterteilen: Liganden wie z.B. Triisopropyl- oder Tricyclohexylphosphan liefern in hohen Ausbeuten selektiv das δ -Lacton 3. Andere Liganden wie z.B. Triethyl- oder Triphenylphosphan führen dagegen bei deutlich geringerer Gesamtausbeute überwiegend zu den Estern 6 und 7.

In der Vergangenheit ist oftmals mit gutem Erfolg versucht worden, die Steuerungseigenschaften eines Liganden bei einer homogenkatalytischen Reaktion mit Hilfe seiner elektronischen und sterischen Eigenschaften zu interpretieren. Schon 1970 führte *Tolman*¹⁹⁾ für Phosphorliganden den elektronischen Parameter $\Sigma \chi_i$ ein, der definiert wurde als die Differenz zwischen den Wellenzahlen der symmetrischen Carbonylstreckschwingung in Ni(CO)₃L-Komplexen mit dem betrachteten Liganden L und dem Bezugsliganden Tris(*tert*-butyl)phosphan. Da sich der Ligand PtBu₃ als das am stärksten basische Phosphan erwies, wurde sein Wert von 2056.1 cm⁻¹ als Nullpunkt der Basizitäts-Skala ausgewählt und alle anderen Phosphorverbindungen gemäß Gleichung (1) auf diesen Standard bezogen:

$$\sum_{i=1}^{3} \chi_{i} = v_{\rm CO} - 2056.1 \, [\rm cm^{-1}]$$
 (1)

In Phosphanen liefert jeder der drei Substituenten am Phosphor einen Beitrag χ_i zur Frequenz der CO-Streckschwingung. *Tolman* ging davon aus, daß sich diese Beiträge additiv verhalten. Diese Annahme konnte für Alkylphosphane durch neuere Messungen mit einem Fourier-Transform-IR-Spektrometer bestätigt werden²⁰.

Auch für die sterischen Eigenschaften der Liganden stellte *Tolman* einen Parameter auf, den Raumkegelwinkel $RKW^{21,22}$, der durch Winkelmessungen an einem Molekülmodell ermittelt werden kann.

Bei dem Versuch, die Ergebnisse der Palladiumkomplex-katalysierten Umsetzung von Butadien und Kohlendioxid (Tab. 1) mit den beiden Parametern $\Sigma \chi_i$ und *RKW* zu korrelieren, wurde auf den Vorschlag von *Tolman*²²⁾ zurückgegriffen, eine Meßgröße Z oberhalb einer "sterisch-elektronischen Landkarte" aufzutragen. Als Meßgröße Z wurde die Ausbeute A des δ -Lactons **3** gewählt, da dieser Wert besonders deutlich in einem breiten Meßbereich durch die Ligandeigenschaften beeinflußt wird. In Abb. 1 sind die Ausbeuten an **3** bei Einsatz 12 verschiedener Phosphane gegen die $\Sigma \chi_i$ - und RKW-Werte aufgetragen.

Abb. 1. Abhängigkeit der Ausbeute des Lactons 3 von den Ligandenparametern

Aus Abb. 1 geht hervor, daß die elektronischen und sterischen Eigenschaften der Liganden keine ausreichende Erklärung für die Steuerung der Katalyse liefern. Zwar zeichnen sich die besten Liganden PiPr₃ und PCy₃ beide durch hohe Raumerfüllung und starke Basizität (= niedriger $\Sigma \chi_i$ -Wert) aus, aber die sterisch und elektronisch vergleichbaren Liganden P(NMe₂)₃ und PtBu₃ bilden das δ -Lacton 3 nur in Spuren. Auch die hohe Aktivität des Tricyclopropylphosphans (PCp₃) kann über die $\Sigma \chi_i/RKW$ -Relation nicht gedeutet werden.

Auffällig ist, daß in allen Liganden, die bei der Synthese von Lacton 3 hochaktiv sind, am Phosphor CHR₂-Gruppen gebunden sind. Wir nehmen an, daß diese Gruppierung zu einer zusätzlichen Aktivierung des Kohlendioxids führt. In Gleichung (2) wird am Beispiel des Triisopropylphosphan-Komplexes ein Vorschlag unterbreitet, wie eine solche CO₂-Aktivierung ablaufen kann.

Durch den Einfluß des Liganden PiPr₃ wird der Bis- η^3 -allyl-Komplex 1 in den η^1, η^3 -Komplex 12 übergeführt. Kohlendioxid schiebt sich in eine C-H-Bindung

des Liganden ein und bildet den Fünfring 13 mit einer neuen C-C- und Pd-O-Verknüpfung. Das so am Palladium koordinierte, "aktivierte CO_2 " reagiert schließlich mit der C₈-Kette. Es bildet sich der Carboxylat-Komplex 14 unter gleichzeitiger Rückbildung des Triisopropylphosphan-Liganden.

Ein zu Gleichung (2) analoger Reaktionsverlauf wurde von Braunstein^{23,24)} an Palladium-Chelatkomplexen des Typs 15 festgestellt und mit Röntgenstrukturanalysen belegt. Wie in Gleichung (3) gezeigt, schiebt sich auch bei dieser Reaktion Kohlendioxid in die C-H-Bindung des Phosphorliganden ein. Durch diese CO₂-Insertion entsteht schon bei Raumtemperatur der Palladium-Fünfring 16, der durch Einleiten von Argon wieder in den Eduktkomplex 15 zurückgespalten werden kann. Komplex 15 wirkt somit als reversibler CO₂-Träger und aktiviert das Kohlendioxid-Molekül in ähnlicher Weise, wie für Komplex 12 vorgeschlagen wurde.

Bei der Umsetzung von Butadien mit Kohlendioxid wurden auch Phosphorund Arsen-Ylide zur Aktivierung des Kohlendioxids eingesetzt. Tatsächlich führt der Zusatz von (Benzoylmethylen)triphenylphosphoran (17) sowie von (Benzoylmethylen)triphenylarsoran (18) zum bisher optimalen Katalysatorsystem

Tab. 2.	Einfluß	von	Ylid-Aktivatoren	auf die	Palladium-	katalysierte	Umsetzung	von	Bu-
			tadier	1 mit Ko	ohlendioxid	·	-		

	Mo	olverh	ältni	s		Aus	beuten	(%)	
Pd(aca	c)2	PiPr ₂	3	Ylid	3	4	5	6	7
1	:	3	:	0	43.9	0.3	0.1	0.6	0.9
1	:	3	:	2 (17)	50.3		0.2	0.6	1.4
1	:	3	:	2 (18)	51.9	_	-	0.9	0.6
1	:	0	:	2 (19)	16.8	0.1	0.1	0.1	0.1
1	:	3	:	2 (19)	58.7	_	0.1	0.9	1.9

Pd(acac)₂/PiPr₃ zu einer Steigerung der δ -Lacton-Ausbeute von 44 auf über 50% (Tab. 2). Eine besondere Rolle innerhalb der Ylid-Aktivatoren kommt dem Ylid (3-Hydroxy-6-oxo-2,4-cyclohexadien-1-yliden)triphenylphosphoran (19) zu. Diese Verbindung führt schon ohne Zusatz von PiPr₃ selektiv zum δ -Lacton 3; durch PiPr₃-Zusatz läßt sich die Ausbeute an 3 sogar auf nahezu 59% steigern.

Bei der Verwendung von Ylid-Aktivatoren kann der in Gleichung (4) wiedergegebene Reaktionsablauf angenommen werden.

In Analogie zu den Arbeiten von *Braunstein* (Gleichung 3) entsteht durch Insertion des Kohlendioxids ein neuer Fünfring 20, in dem die Chelatisierung über den Sauerstoff der Benzoylgruppe ersetzt worden ist durch ein Sauerstoffatom des CO_2 .

Bei der Reaktion zwischen Butadien und Kohlendioxid läßt sich bezüglich der Koordinationssphäre am Katalysatormetall zusammenfassend feststellen, daß offensichtlich weniger die elektronischen und sterischen Eigenschaften der Liganden eine Rolle spielen, sondern vielmehr die Fähigkeit eines Liganden bzw. Aktivators, das CO_2 vorübergehend zu binden, voraussichtlich über die Stufe eines labilen Pallada-Fünfringes.

Bei der "in situ-Katalyse" hat nicht nur der Ligand, sondern auch die Übergangsmetallkomponente einen wesentlichen Einfluß auf die Aktivität des Katalysatorsystems. Es wurden deshalb neben den bisher beschriebenen Versuchen mit Palladiumbis(acetylacetonat) auch Umsetzungen mit weiteren Palladiumkomple-

Pollodium Komplex		6)			
r anadrum-Komplex	3	4	5	6	7
Pd(acac) ₂	43.9	0.2	0.1	0.6	0.5
Pd(hfacac) ₂	33.0	0.1	_	0.8	1.3
[Pd(C ₃ H ₃)Cl] ₂ /NaOPh	43.5	0.9	0.2	0.2	0.2
$[Pd(C_3H_5)(OAc)]_2$	23.1	0.8	0.2	3.8	5.1
$Pd_2(hfacac)_2(C_8H_{12})$	25.2	0.2	0.2	0.6	0.9
$Pd_2(OAc)_2(C_8H_{12})$	39.4	0.6	0.2	2.1	3.1
$[Pd(OAc)_2]_3$	48.2	0.3	0.3	0.6	0.7

Tab. 3. Einfluß der Palladiumkomponente auf die Umsetzung von Butadien und Kohlendioxid^{a)}

^{a)} In allen Versuchen wurde als Ligand PiPr₃ zugesetzt.

xen durchgeführt, die sich durch eine gänzlich unterschiedliche Koordinationssphäre auszeichnen (Tab. 3).

Wird Palladiumbis(hexafluoroacetylacetonat) Pd(hfacac)₂ anstelle von Pd(acac)₂ gemeinsam mit dem Liganden PiPr₃ in die Katalyse eingesetzt, so verringert sich die Ausbeute des δ -Lactons 3 von 44 auf 33%. Offensichtlich ist von großer Bedeutung, wie stark die "Abgangsgruppe" am Metall gebunden ist und wie schwer sie vom Phosphorliganden verdrängt werden kann.

Gute Ergebnisse wurden ebenfalls mit zweikernigen Palladiumkomplexen erzielt, auch wenn daraus nicht gefolgert werden kann, daß eine zweikernige Spezies die katalytisch aktive Zwischenstufe darstellt²⁵⁾. Sowohl die Chloro- und Acetatoverbrückten Palladium-Allyl-Komplexe als auch die Octadienyl-verbrückten Systeme Pd₂(hfacac)₂(C₈H₁₂) und Pd₂(OAc)₂(C₈H₁₂) liefern als Hauptprodukt das δ -Lacton 3. Von besonderem Interesse ist auch das trimere Palladium(II)-acetat, in dem jedes Palladiumatom durch Acetatbrücken mit zwei benachbarten verbunden ist. Nach Aktivierung mit Triisopropylphosphan ergibt dieser Komplex eine δ -Lacton-Ausbeute von 48%.

Wesentlich ungünstigere Übergangsmetallkomponenten sind die Palladium(0)-Komplexe Pd(PPh₃)₄ und Pd(dppe)₂, die für die Katalyse ungeeignete Phosphanliganden enthalten und dadurch den aktivierenden Effekt des $PiPr_3$ aufheben. Weitaus bessere Katalystoren bilden sich bei Einsatz phosphanfreier, kationischer Palladiumkomplexe. Als besonders geeignet erwiesen sich (Cyclooctadien)(cyclopentadienyl)palladium-tetrafluoroborat und der analoge Allyl-Komplex. Beide enthalten den nur locker gebundenen 1,5-Cyclooctadien-Liganden, der leicht abdissoziieren kann und dadurch die für die Katalyse notwendigen freien Koordinationsstellen zur Verfügung stellt.

Im Gegensatz zu den bisher aufgeführten Palladiumsystemen, die alle zum δ -Lacton 3 führen, ist bei Einsatz von Palladium-Ziegler-Natta-Katalysatoren ein unterschiedliches Verhalten festzustellen. Katalysatoren aus äquimolaren Mengen von Palladiumbis(acetylacetonat) und Triethylaluminium liefern zusammen mit den Liganden PiPr₃ oder PCy₃ auch das δ -Lacton 3; bei Zusatz von Triphenylphosphan bildet sich jedoch mit Ausbeuten um 10% das bisher nur in Spuren beobachtete γ -Lacton 4 als Hauptprodukt.

Metallkomplex	Ligand	3	Ausbeuten (%) 4	6 + 7
Ni(COD) ₂	PiPr ₃	1.5	_	0.1
Ni(COD) ₂	P(OBu) ₃		_	1.5
RuH(OAc)(PPh ₁) ₁	PiPr ₃	6.4	0.4	0.1
RuH ₂ (PPh ₃) ₄	PiPr3	3.7	0.1	0.2
RuH(OAc)(CO)(PPh ₃) ₂	PiPr ₃	2.8	_	0.2
RuH ₂ (CO)(PPh ₃) ₃	PiPr ₃	2.0	_	0.1

Tab. 4. Nickel- und Rutheniumkomplexe als Katalysatoren bei der Umsetzung von Butadien mit Kohlendioxid

Wie schon in Schema 1 aufgeführt, sind neben Palladium- auch Nickel-Komplexe in der Lage, die Bildung von Kohlendioxid-Produkten zu katalysieren, allerdings nur in geringem Umfang (Tab. 4). Als aktiv erwiesen sich in-situ-Katalysatoren aus Phosphorliganden und Bis(1,5-cyclooctadien)nickel, während sich Ni(acac)₂, NiCl₂(PCy₃)₂, "Zentrumnickel" Ni(C₁₂H₁₈) und Nickelocen Ni(C₅H₅)₂ als ungeeignet herausstellten.

Auch Rutheniumkomplexe katalysieren die Umsetzung von Butadien mit Kohlendioxid. Die in Tab. 4 aufgeführten Hydrido(phosphan)ruthenium(II)-Komplexe liefern das δ -Lacton 3 in Ausbeuten bis zu ca. 6%. Phosphanfreie Ruthenium(III)-Verbindungen wie Ru(acac)₃ oder RuCl₃ · 3 H₂O erwiesen sich als inaktiv.

Vom Standpunkt des Synthetikers aus sind die Ergebnisse mit Nickel- und Rutheniumkatalysatoren wenig zufriedenstellend. Die Ergebnisse sind jedoch trotz der geringen Umsätze beachtenswert, da hiermit zum ersten Mal gezeigt werden konnte, daß diese beiden Metalle bei Dien/CO₂-Reaktionen katalytisch aktiv sind. Da sich die gleichen Endprodukte bilden wie beim Einsatz von Palladiumkatalysatorsystemen, kann davon ausgegangen werden, daß die Reaktionen auch über ähnliche Allyl-Zwischenstufen verlaufen, wie sie im Cyclus A des Schemas 1 am Beispiel des Palladiums beschrieben sind.

Neben dem verwendeten Katalysator ist das Lösungsmittel ein weiterer, wichtiger Faktor, der die Umsetzung von Butadien mit Kohlendioxid maßgeblich beeinflußt. Es wurde eine Reihe von Lösungsmitteln untersucht, von denen bekannt ist, daß sie für verwandte Reaktionen wie Oligomerisierungen¹⁷⁾ und Telomerisierungen¹⁸⁾ gut geeignet sind. Für alle eingesetzten Lösungsmittel war ebenfalls gewährleistet, daß sie die Edukte und den Katalysator in eine homogene Phase überführen und daß sie nicht selber mit Butadien reagieren. Bezüglich der Probenaufbereitung wurden die Lösungsmittel so ausgewählt, daß sie nach der

Abb. 2. Abhängigkeit der Ausbeute des Lactons 3 von Lösungsmittelparametern (Katalysator: Pd(acac)₂/PiPr₃, Abkürzungen siehe Text)

Reaktion durch Destillation oder Extraktion von den Produkten abgetrennt werden konnten. Die erzielten Ergebnisse sind in Abb. 2 zusammengefaßt. In diesem Bild ist die Ausbeute (= A) des δ -Lactons 3 gegen die Dielektrizitätskonstante *DK* und den E_T -Wert des Lösungsmittels aufgetragen. Der E_T -Wert ist eine von *Dimroth* und *Reichardt*²⁶⁾ über spektroskopische Messungen ermittelte Kennzahl für die Polarität eines Lösungsmittels. Unter "Polarität" wird dabei die Summe aller Moleküleigenschaften verstanden, die Wechselwirkungskräfte zwischen den Molekülen des gelösten Stoffes und des Lösungsmittels bewirken.

Wie Abb. 2 zeigt, muß die Umsetzung von Butadien mit Kohlendioxid in Nitrilen durchgeführt werden, um gute Lacton-Ausbeuten zu erzielen. In Acetonitril beträgt die Ausbeute 44%, in Propionitril (nicht eingezeichnet) 36% und in Benzonitril 17%. In allen anderen Lösungsmitteln, z.B. auch in Hexamethylphosphorsäuretriamid (HMPT) oder Aceton, die sich für Telomerisierungsreaktionen als ausgezeichnet erwiesen haben, ergeben sich lediglich Ausbeuten kleiner als 2%. Auch Nitromethan, ein Lösungsmittel mit DK- und E_T -Werten, die mit denen des Acetonitrils nahezu übereinstimmen, führt nur in Spuren zu Reaktionsprodukten.

Offensichtlich liefern die Polaritätseigenschaften der Lösungsmittel keine ausreichende Erklärung für die Sonderrolle der Nitrile. Ebenfalls ist keine Abhängigkeit der Ausbeute von der Fähigkeit der einzelnen Lösungsmittel erkennbar, Kohlendioxid zu lösen. Wir nehmen deshalb an, daß im Verlauf der Katalyse Übergangsmetall-Nitril-Wechselwirkungen eine Rolle spielen und daß das Nitril – vergleichbar den Phosphanen – als Ligand wirksam wird. Schon seit langem ist bekannt, daß Nitrile als schwache Donorliganden an Metallen koordinieren können²⁷⁾. Solche schwach gebundenen Liganden sind generell in der Lage, sich wieder einfach vom Metall abzulösen und dadurch eine freie Koordinationsstelle zu schaffen. Durch diesen Schritt wird den Substratmolekülen eine Koordination am Metall und damit der Start des Katalysecyclus ermöglicht²⁸⁾. Die Raumbeanspruchung der Nitrile am Übergangsmetall ist verhältnismäßig gering, da sie fast alle end-on über den Stickstoff am Metall gebunden sind 29). Röntgenstrukturuntersuchungen belegen, daß die Nitrilliganden linear am Metall koordiniert sind und der M-N-C-Winkel nahezu 180° beträgt. Bemerkenswert ist, daß die Nitrilliganden besonders leicht durch Olefine verdrängt werden. So können z.B. Olefin-Komplexe des Palladiums(II) ausgehend von [Pd(NCCH₁)₂Cl₂] durch Substitutionsreaktionen synthetisiert werden³⁰. Auch bei katalytischen Umsetzungen, z.B. bei der Isomerisierung von α -Olefinen³¹, erwies sich der Nitril-Komplex [Pd(NCCH₃)₂Cl₂] als aktiv. Ausgehend von diesen Erfahrungen mit Monoenen ist zu erwarten, daß auch Diene leicht Nitril-Liganden verdrängen können.

Der "Nitril-Effekt" bei der Umsetzung von Butadien mit Kohlendioxid ist somit durch eine "Voraktivierung" des Palladiums durch das Nitril zu erklären. Der Phosphanligand und das – im hohen Überschuß vorliegende Nitril – konkurrieren um die Koordinationsstellen am Palladium und bilden eine instabile Zwischenstufe Pd(NCR)_x(PR₃)_y, die bei Einwirkung von Butadien Nitril unter Bildung des Bis- η^3 -Allylkomplexes 1 abspaltet. Dieser Effekt der "Voraktivierung" durch den schwachen σ -Donor/ π -Akzeptor-Liganden Nitril ist ebenfalls bei einem geringen Nitrilzusatz zu beobachten: Schon katalytische Mengen Acetonitril im Lösungsmittel Toluol führen zu einer verstärkten Bildung des δ -Lactons 3.

Von einigen Eisen-³²⁾ und Iridium-³³⁾ Komplexen ist bekannt, daß sie unter Spaltung einer C-H-Bindung Acetonitril oxidativ addieren und anschließend Kohlendioxid in die Metall-Kohlenstoffbindung insertieren können. Angewendet auf die Butadien/CO₂-Chemie, läßt

sich - rein spekulativ - der in Gleichung (5) formulierte Reaktionsablauf zur Synthese des δ -Lactons 3 aufstellen.

$$L_{x}M + CH_{3}CN \longrightarrow H^{2}M - CH_{2}CN \xrightarrow{CO_{2}} L_{x}M - O - C - CH_{2}CN \qquad (5)$$

Es ist jedoch sehr unwahrscheinlich, daß die Reaktion tatsächlich gemäß Gleichung (5) abläuft. Dagegen spricht, daß die C-H-Aktivierung des Acetonitrils nur bei extrem elektronenreichen Metall-Ionen beobachtet wird. Ebenfalls ist mit dem in Gleichung (5) aufgestellten Reaktionsverlauf nicht zu erklären, wieso auch Benzonitril – das über keinen aciden, zur CN-Gruppe α -ständigen Wasserstoff verfügt – in guten Ausbeuten die Synthese des δ -Lactons 3 ermöglicht. Zur Erklärung des "Nitril-Effektes" geben wir deshalb der Bildung von Palladiumkomplexen mit N-gebundenen Nitrilliganden den Vorzug.

Die bisher vorgestellten katalytischen Ergebnisse der Butadien/CO₂-Reaktion wurden mit Hilfe des Katalysecyclus A (in Schema 1) interpretiert. Ein entscheidender Schritt in diesem Cyclus ist die Bildung des Carboxylat-Komplexes 2 durch die Insertion von Kohlendioxid in eine Übergangsmetall-Allyl-Bindung, eine Reaktion, die im Falle des Nickels^{34,35} und Palladiums³⁶⁻³⁹ schon intensiv untersucht wurde.

Im folgenden werden katalytische und stöchiometrische Versuche vorgestellt, die zum Ziel hatten, den Mechanismusvorschlag des Cyclus A zu erhärten und weitere Informationen über die Bildung und Reaktivität von Palladium-Carboxylatkomplexen zu erhalten.

Es wurde u.a. festgestellt, daß das isolierte δ -Lacton 3 Palladium-katalysiert zu den beiden γ -Lactonen 4 und 5 isomerisiert werden kann¹⁵⁾. Kinetische Untersuchungen zeigen, daß sich bei einer hohen Palladiumkonzentration in der Reaktionslösung das Lacton 3 sehr schnell in Lacton 4 umwandelt. Dieses Lacton mit nicht konjugierten Doppelbindungen geht dann anschließend in einer langsameren Reaktion in das vollständig konjugierte Lacton 5 über. Die Palladium-katalysierte Isomerisierung vom Sechsring zum Fünfring verläuft voraussichtlich über die Zwischenstufe 15 (Schema 2), die – bis auf die Lage der Doppelbindung in der Seitenkette – identisch ist mit der Zwischenstufe 2 (Schema 1). Die Bildung der Spezies 15 ist als oxidative Addition des δ -Lactons an das Palladium unter gleichzeitiger Lacton-Ringöffnung aufzufassen. Aus 15 bildet sich das γ -Lacton 4 (Weg a in Schema 2) durch eine Verknüpfung des Sauerstoffes mit dem Kohlenstoffatom C-4. Dazu muß vorab ein an C-4 gebundener Wasserstoff an das Ende der Kette unter Bildung der Zwischenstufe 16 mit einer innenständigen Allylgruppe wandern.

Bei einer weiteren Palladium-katalysierten Reaktion des δ -Lactons 3, der Umsetzung mit einem Überschuß an Butadien zu den Estern 6 und 7, kommt es ebenfalls im ersten Schritt zu einer oxidativen Addition des Lactons an das Palladium unter Bildung von 15. Zwei Moleküle Butadien addieren sich an diese Zwischenstufe und bilden die Spezies 17 mit einer doppelt η^3 -gebundenen C₈-Kette (Weg b in Schema 2). Wiederum erfolgt zuerst eine Wasserstoff-Verschiebung, ausgehend vom Kohlenstoffatom C-4. Der Wasserstoff wandert an eine

Allylgruppe der C₈-Kette, die dadurch in einen η^2, η^3 -gebundenen Liganden übergeführt wird. Wie in Formel 18 gezeigt, geht dabei die Allylgruppe des Carboxylat-Liganden in eine Dien-Struktur über, die möglicherweise ebenfalls am Palladium gebunden ist. Durch Verknüpfung des Carboxylat-Sauerstoffes mit dem endständigen (Weg c) oder innenständigen (Weg d) Allyl-Kohlenstoffatom der C₈-Kette bilden sich schließlich die beiden Ester 6 und 7 der 2-Ethenylheptadiensäure.

Es ist bemerkenswert, daß sich Allylcarboxylat-Palladiumkomplexe sowohl bei der Umsetzung von Butadien mit Kohlendioxid als auch bei der oxidativen Addition des δ -Lactons 3 an Palladium bilden und in beiden Fällen dieselben Endprodukte erhalten werden. Diese Analogie legte es nahe, ausgehend vom δ -Lacton in einem stöchiometrischen Experiment zu versuchen, eine Carboxylat-Zwischenstufe zu isolieren.

Es wurde eine stöchiometrische Umsetzung von Palladiumbis(acetylacetonat) mit Triisopropylphosphan und dem δ -Lacton 3 durchgeführt. Im Lösungsmittel Acetonitril bei einer Temperatur von 90°C, also bei Reaktionsbedingungen, die auch für katalytische Umsetzungen typisch sind, bildeten sich gelbe Kristalle des Komplexes Bis(2-ethyliden-4,6-heptadienoato)bis(triisopropylphosphan)palladium (22). Seine Entstehung kann über die in Schema 3 aufgeführte Reaktionsfolge interpretiert werden.

Durch eine oxidative Addition des δ -Lactons an Palladiumbis(acetylacetonat) bildet sich die Spezies 19 mit dem auch für die Zwischenstufen 2 und 15 formulierten Allylcarboxylat-Liganden. Die hohe Koordinationszahl von 19 läßt vermuten, daß diese Spezies nur als kurzlebige Übergangsstufe existiert. Im nächsten Schritt erfolgt ein Wasserstoff-Transfer vom Kohlenstoffatom C-4 des Carboxylats zum Acetylacetonat-Liganden analog zu $17 \rightarrow 18$ (Schema 2). Unter Abspaltung von Acetylaceton, das gaschromatographisch nachgewiesen werden konnte, und gleichzeitiger Anlagerung von Triisopropylphosphan entsteht der Komplex 20, der – nach einer Wiederholung dieser Reaktionsfolge – über die Zwischenstufe 21 in den isolierten Komplex 22 übergeht. Es ist von Bedeutung, daß dieser

Abb. 3. Molekülstruktur des Komplexes 22

Chem. Ber. 119 (1986)

Tab. 5. Kristallographische Daten von 22*)

C₃₆H₄₄O₄P₂Pd, Molmasse 728.9 Größe des Kristalls 0.04 × 0.50 × 0.29 mm a = 8.009 (1), b = 11.639 (2), c = 11.839 (1) Å $\alpha = 70.92$ (1)°, $\beta = 74.32$ (1)°, $\gamma = 70.84$ (1)° V = 968.65 Å³, d_{ber}. 1.25 g cm⁻³, Raumgruppe PĪ, Z = 1, μ (Mo- $K_{\bar{\alpha}}$) = 5.8 cm⁻¹, Enraf-Nonius CAD-4 Diffraktometer Mo-Strahlung mit Graphit-Monochromator ($\lambda = 0.71069$ Å) Meßtemperatur 21°C, Meßmethode $\Omega - 2\Theta$, Θ -Bereich 1.0 – 27.4° gemessene Reflexe ($\pm hkl$) 4346, davon beobachtet ($I \ge 2\sigma(I)$) 4021 Lösung der Struktur durch Schweratom-Methode. Alle Wasserstoffe wurden gefunden, aber nicht verfeinert. Das Pd-Atom ist statistisch fehlgeordnet (Verhältnis 96:2:2) verfeinerte Parameter 200, R = 0.049, R_w ($w = 1/\sigma^2(F_0)$) 0.059, Restelektronendichte 0.76 eÅ⁻³

Tab. 6. Atomkoordinaten und thermische Parameter von 22

ATOM	X	Y	Z	Ū(1,1)	U(2,2)	U(3,3)	U(1,2)	U(1,3)	U(2,3)
PD	0.0000	0.0000	0.0000	0.035	0.026	0.033	-0.007	-0.008	-0.005
P	0.0506(1)	-0.0224(1)	0.1954(1)	0.034	0.039	0.036	-0.009	-0.006	-0.010
01	0.0274(3)	0.1786(2)	-0.0628(2)	0.048	0.036	0.047	-0.013	-0.011	-0.005
02	-0.2516(4)	0.2623(2)	0.0264(2)	0.064	0.056	0.081	-0.017	0.014	-0.017
CI	-0.1070(5)	0.2719(3)	-0.0378(3)	0.052	0.043	0.044	-0.009	-0.013	-0.011
Ç2	-0.0713(5)	0.4005(3)	-0.0966(3)	0.064	0.039	0.048	, -0. 010	-0.015	-0.012
C3	-0.2343(6)	0.5116(3)	-0.0865(4)	0.078	0.044	0.065	-0.005	-0.011	-0.017
C4	-0.3303(6)	0.5648(3)	-0.1916(4)	0.065	0.042	0.076	-0.004	-0.015	-0.012
C5	-0.2692(6)	0.5424(3)	-0.3000(4)	0.062	0.047	0.075	-0.010	-0.020	-0.008
C6	-0.3653(7)	0.5972(4)	-0.4016(5)	0.080	0.058	0.088	-0.008	-0.033	-0.008
C7	-0.2985(9)	0.5788(6)	-0.5111(5)	0.112	0.099	0.077	-0.019	-0.040	-0.016
C8	0.0939(6)	0.4119(3)	-0.1503(3)	0.072	0.046	0.055	-0.022	-0.015	-0.008
C9	0.1450(8)	0.5333(4)	-0.2099(4)	0.112	0.063	0.074	-0.046	-0.017	-0.006
C1 0	-0.1579(5)	-0.0140(3)	0.3129(3)	0.043	0.062	0.044	-0.016	0.001	-0.013
C11	-0.2836(6)	0.1165(4)	0.3019(4)	0.054	0.076	0.080	-0.003	0.015	-0.020
C12	-0.2506(7)	-0.1092(5)	0.3153(5)	0.062	0.099	0.106	-0.041	0.024	-0.035
C13	0.1425(5)	0.1036(3)	0.1979(3)	0.054	0.047	0.048	-0.020	-0.011	-0. 014
C14	0.1656(8)	0.1018(4)	0.3228(4)	0.114	0.081	0.059	-0.047	-0.025	-0.021
C15	0.3162(5)	0.1114(4)	0.1051(4)	0.050	0.063	0.075	-0.029	-0.008	-0.016
C16	0.1953(5)	-0.1814(3)	0.2560(3)	0.049	0.043	0.050	-0.008	-0.016	-0.010
017	0.2027(8)	-0.2198(4)	0.3914(4)	0.113	0.067	0.072	0.014	-0.053	-0.012
C18	0.3831(5)	-0.2065(4)	0.1815(4)	0.047	0.058	0.100	-0.004	-0.015	-0.022

*) Weitere Einzelheiten zur Kristallstrukturanalyse können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD 51 549, des Autors und des Zeitschriftenzitats angefordert werden.

Bir	ndur	igsab	stär	nde in	(%)							
Pd	-	Р			2.372(1)	C3	-	c	4		1.49	2(7)
Pd	-	01			2.031(2)	C4	-	C!	5		1.32	2(7)
Р	-	C 1	0		1.860(4)	C5	-	C	5		1.45	58 (8)
Р	-	· C1	3		1.856(4)	C6	-	C.	7		1.32	21(9)
P	-	· C1	6		1.860(4)	C8	-	C	Э		1.49	95(7)
01	-	· C1			1.303(5)	C10	-	C	11		1.51	LO(7)
02	-	· C1			1.219(5)	C10	-	C	12		1.51	L3 (8)
Cl	-	C2			1.516(6)	C13	-	C	14		1.53	31(7)
C2	-	· C3			1.517(6)	C13	-	C	15		1.53	81(6)
C 2	-	· C8			1.334(7)	C16	-	C	17		1.52	29(7)
						C16	-	C	18		1.51	L3 (7)
P BING	- -	Pd	(el 	01 01) 92.7(1)			-	C2	-	сз	115.2(4
P*	-	Pd	-	01	87.3(1)		21	-	C2	-	C8	121.1(4
Pd	-	P -	-	C10	113.2(1)		23	-	C2	-	C8	123.7(4
Pđ	-	P _	-	C13	112.6(1)		22	-	C3	-	C4	115.6(4
Pd	-	P	-	C16	111.4(1)		23	-	C4	-	C5	126.4(4
C10	-	P	-	C13	105.0(2)		24	-	C5	-	C6	125.2(5
C10	-	P	-	C16	102.9(2)		25	-	C6	-	C7	124.4(6)
C13	-	Р	-	C16	111.2(2)	(22	-	C8	-	C9	125.7(4)
Pd	-	01	-	C1	119.8(2)		211	-	C10	-	C12	112.2(4)
01	-	C1	-	02	125.5(4)	(214	-	C13	-	C15	110.5(4)
01	-	Cl	-	C2	114.2(3)		217	-	C16	-	C18	110.4(4)
02	-	C1	-	C2	120.3(4)							

Tab. 7. Bindungsabstände und -winkel in 22

Abb. 4. Anordnung der Moleküle des Komplexes 22 in der Elementarzelle

Komplex keinen allylisch gebundenen Carboxylat-Liganden aufweist, sondern den Ethylidenheptadienoat-Liganden mit einer 1,3-Dienstruktur. Dieser Ligandentyp wurde schon im Komplex 18 bei der Besprechung der Esterbildung vorgestellt.

Die Kristallstrukturanalyse von 22 (Tab. 5) ergab die in Abb. 3 wiedergegebene Molekülstruktur. Das zentrale, quadratisch planar koordinierte Palladium-Atom besetzt das Inversionszentrum in der Raumgruppe P1, womit die Molekülsymmetrie 1 (Ci) festgelegt ist. Eine geringe Fehlordnung (4%) des Schweratoms erschwerte die Analyse im abschließenden Stadium (ohne Berücksichtigung der Fehlordnung: R = 0.054), jedoch konnten sämtliche Wasserstoff-Atome lokalisiert werden. Atomparameter sowie ausgewählte Bindungsdaten sind in den Tabellen 6 und 7 zusammengefaßt. Die Carboxylgruppe ist mit einem Pd-O-Abstand von 2.031 (2) Å lediglich über ein Sauerstoff-Atom am Palladium gebunden; der nicht bindende Abstand zum Sauerstoff-Atom der Carbonylgruppe (C-O 1.22 (1) Å) beträgt 3.12 Å. Die Kohlenstoff-Atome C1 wie auch C2 sind exakt trigonal planar; die Faltung der Dien-Kette ergibt sich, wie die Molekülpackung zeigt (Abb. 4), aus der Anordnung der Moleküle in der Elementarzelle. Aus Abb. 4 wird zudem ersichtlich, daß die Dien-Kette keinerlei intermolekulare Wechselwirkungen über benachbarte Palladium-Atome eingeht. Diesen Befunden entsprechen auch die Bindungsabstände im konjugierten System der Kette.

Bei der Synthese von 22 verfärbt sich die Lösung, aus der später die blaßgelben Kristalle des Komplexes 22 erhalten werden, nach einiger Zeit weinrot. Dies läßt darauf schließen, daß in der Lösung eine oder mehrere weitere Spezies, z.B. die Komplexe 19 oder 21, vorliegen; eine Isolierung war jedoch nicht möglich.

Komplex 22 ist nicht als eine katalytische Zwischenstufe, wie sie mit den Verbindungen 2 bzw. 15 diskutiert wurde, anzusehen. Seine Bildung belegt jedoch die schon bei den katalytischen Umsetzungen mit dem δ -Lacton gemachte Beobachtung, daß das Lacton 3 in Form einer oxidativen Addition an Palladium koordinieren kann. Auch der Vorschlag zur Bildung der Carbonsäureester 6 und 7 (Schema 2) wird durch die Isolierung von Komplex 22 gestützt.

Komplex 22 ist bei der Umsetzung von Butadien mit Kohlendioxid ein hervorragender Katalysator. Das beste Ergebnis mit einer Ausbeute an Lacton 3 von 49% wird dann erzielt, wenn kein weiteres Phosphan zugesetzt wird. Bei Zugabe von zusätzlichem Triisopropylphosphan sinkt die Ausbeute deutlich ab. 22 ist somit ein echter Einkomponentenkatalysator mit einem optimalen Palladium-Phosphor-Verhältnis.

Steuerungsmöglichkeiten im Cyclus B

Gemäß Cyclus B des Schemas 1 können bei Einsatz von Rhodiumkatalysatoren drei Moleküle Butadien mit einem Molekül Kohlendioxid unter Bildung des γ -Lactons 10 (2-Ethyl-2,4,9-undecatrien-4-olid) verknüpft werden. In Schema 4 sind u.a. die verschiedenen Möglichkeiten zusammengefaßt, die Entstehung dieses ungewöhnlichen Lactons zu erklären.

Eine Möglichkeit besteht darin, daß die drei Butadien-Moleküle gleichzeitig am Rhodium – jeweils über η^2 , η^2 -Bindungen – koordinieren und eine Spezies 23

bilden. Die Butadienmoleküle verknüpfen sich anschließend zu einer lincaren C₁₂-Kette. Von den insgesamt 30 C–C-Bindungselektronen der drei Ausgangsmoleküle werden 22 Elektronen für die C–C- σ -Bindungen benötigt. Die restlichen 8 Elektronen verteilen sich in Form von einer Doppelbindung (η^2) und zwei Allylgruppen (η^3) auf die C₁₂-Kette. Übergangsmetallkomplexe mit η^3 , η^3 -gebundener C₁₂-Kette sind von Rhodium bislang nicht bekannt; von anderen Metallen dagegen konnten analoge Verbindungen isoliert werden. Schon 1964 wurde die Synthese von RuCl₂(η^3 , η^3 -C₁₂H₁₈) aus Rutheniumtrichlorid und Butadien beschrieben⁴⁰). *Wilke* und Mitarbb. fanden den Nickel-Komplex [Ni(η^3 , η^3 -C₁₂H₁₈)]⁴¹ sowie die Molybdän- und Wolfram-Komplexe [M(CO)₂(η^3 , η^3 -C₁₂H₁₈)]⁴²; Jolly berichtete kürzlich über die Synthese von [Pd(η^3 , η^3 -C₁₂H₁₈)] aus Bis(dibenzylidenaceton)palladium und Butadien⁴³.

In der diskutierten Rhodium-C₁₂H₁₈-Zwischenstufe können die beiden Allylgruppen und die Doppelbindung verschieden über die C12-Kette verteilt sein. Befinden sich die beiden Allylgruppen in endständiger Position, ergibt sich Komplex 26; ist eine Allylgruppe innenständig, so bildet sich 8. Es ist jedoch wenig wahrscheinlich, daß die Katalyse über 26 verläuft: Nach Einschub von Kohlendioxid in eine der endständigen Allylgruppen unter Bildung der Spezies 27 und anschließender Verknüpfung des Carboxyl-Sauerstoffes mit dem Kohlenstoff der zweiten Allylgruppe müßte sich ein 10-Ring-Lacton, z. B. 29, freisetzen. Da solche Produkte nicht beobachtet werden, verläuft die Reaktion voraussichtlich über die Zwischenstufe 8. Es ist möglich, daß sich 8 direkt aus 23 bildet, oder auch, daß sich zuerst zwei Butadienmoleküle verknüpfen und den Octadiendiyl-Butadien-Komplex 24 ergeben, der dann zu 8 weiterreagiert. Durch die Insertion von Kohlendioxid in die endständige Allylgruppe von 8 kann sich der Carboxylatkomplex 9 bilden. Überraschend liefert dieser nicht das δ -Lacton 30 (Weg b), wie es in Analogie zur Palladiumkatalyse zu erwarten wäre, sondern es findet eine vollständige Isomerisierung zu Komplex 28 (Weg a) statt. Diese Isomerisierung ist, analog den Mechanismen der Schemata 2 und 3, wieder mit einer Wasserstoff-Verschiebung verbunden. Aus 28 kann sich das y-Lacton 31 freisetzen, das - wie im Fall der Palladiumkatalyse – zu dem stabileren konjugierten γ -Lacton 10 weiterisomerisiert.

Wie Schema 4 zu entnehmen ist, existiert zu dem bisher betrachteten Reaktionsablauf noch eine weitere Alternative. Wenn der Rhodium-Eduktkomplex "RhL" zunächst nur mit zwei Butadienmolekülen reagiert, entsteht die zum Palladiumkomplex 1 analoge Rhodiumverbindung 25. Durch Insertion von Kohlendioxid bildet diese einen Carboxylatkomplex, der weiteres Butadien koordinieren kann (Komplex 11). Durch C-C-Verknüpfung des Carboxylatrestes mit dem koordinierten Butadienmolekül entsteht schließlich die schon beschriebene Zwischenstufe 9. Eine weitere Schwierigkeit bei der Festlegung des tatsächlichen Reaktionsablaufes besteht darin, daß beide Mechanismusvarianten mit zwei bzw. drei anfänglich koordinierten Butadienmolekülen miteinander verknüpft sein können. So kann Komplex 25 durch Addition von Butadien in 24 und dieses wiederum durch Kohlendioxid-Insertion in 11 übergehen.

Versuche, den Reaktionsablauf zu beeinflussen, erfolgten – wie im Fall der Palladiumkatalyse – wieder vornehmlich über die Variation von Metallkomponente und Ligandenfeld. Als günstigste Rhodiumverbindungen erwiesen sich Rhodium(I)-Komplexe mit leicht dissoziierenden Liganden, z. B. Bis(ethen)rhodiumacetylacetonat. Auch ionische Rhodiumkomplexe, wie z. B. [Rh(nbd)(PPh₃)₂]-BPh₄ und [Rh(COD)(PPh₃)₂]PF₆, als auch monomere bzw. dimere Allylrhodium komplexe, wie z. B. [Rh(C₃H₅)₂acac], [Rh(C₃H₅)₂Cl]₂ oder [Rh(C₃H₅)₂(OAc)]₂, führten zum δ -Lacton 10.

Rhodium(I)-Komplexe mit σ -gebundenen Liganden, z.B. die Phenyl- bzw. Phenoxyphosphan-Komplexe R – Rh(PPh₃)₃ mit R = Ph/OPh, zeigten dagegen keine katalytische Aktivität. Auch das Rhodium(III)-System Rhodiumtris(acetylacetonat) erwies sich überraschend als inaktiv.

Die eingesetzten Rhodiumkomplexe müssen durch einen zusätzlichen Phosphanliganden – in Schema 4 mit L bezeichnet – modifiziert werden. Die höchsten Ausbeuten an γ -Lacton 10 von 5–8% werden mit einem Katalysator aus [Rh(C₂H₄)₂acac] und einem Überschuß an Triethylphosphan erzielt. Das bei der Palladiumkatalyse hervorragende Triisopropylphosphan ist bei der Rhodiumkatalyse inaktiv, evtl. weil am Rhodium kein Platz mehr für einen sterisch anspruchsvollen Liganden vorhanden ist, wenn gleichzeitig schon drei Butadienmoleküle am Metall koordiniert sind. Die hohe Labilität der aktiven Rhodiumspezies kommt auch darin zum Ausdruck, daß die Katalyse nur in einem sehr engen Temperaturbereich um 120°C abläuft. Bei niedrigeren Temperaturen werden nur Butadienoligomere gebildet, bei höheren Temperaturen beginnt Katalysatorzersetzung. Wie bei der Palladiumkatalyse gibt es auch bei der Rhodiumkatalyse einen "Nitril-Effekt". Während in den Lösungsmitteln Ethanol und Isopropylalkohol nur Spuren des Lactons 10 erhalten werden und *n*-Pentan und Aceton den Katalysator desaktivieren, erwies sich Acetonitril als das mit Abstand beste Reaktionsmedium.

Steuerungsmöglichkeiten im Cyclus C

Die nur sehr geringen Ausbeuten im Katalysecyclus B bei der Synthese des Lactons 10 aus Butadien und Kohlendioxid ließen uns nach einer alternativen Herstellungsmethode für 10 suchen. Dabei bot es sich an, die im Cyclus A beschriebene Eigenschaft des δ -Lactons 3 auszunutzen, sich in einer oxidativen Addition an ein Übergangsmetall koordinieren zu können. Tatsächlich erwies es sich als möglich, den Lactonring von 3 auch am Rhodium zu öffnen und mit weiterem Butadien zum Lacton 10 umzusetzen. Der beste Katalysator für diese Reaktion ist das im Cyclus B optimierte System aus Bis(ethen)rhodiumacetylacetonat und Triethylphosphan. Andere Liganden, wie z.B. Triisopropylphosphan, waren nahezu inaktiv. Bezogen auf eingesetztes δ -Lacton 3 konnte das γ -Lacton 10 in Ausbeuten bis zu 44% erhalten werden.

Der Mechanismus dieser Reaktion kann durch Zwischenstufen erklärt werden, die schon in Schema 4 auftraten. Durch eine oxidative Addition des δ -Lactons 3 am Rhodiumkomplex und eine gleichzeitige Koordination von Butadien bildet sich die Zwischenstufe 11, die – wie schon erläutert – über C-C-Verknüpfung, Isomerisierung und C-O-Verknüpfung in Lacton 10 übergeht. Die naheliegende Mechanismusinterpretation des Katalysecyclus C über 11 rechtfertigt jedoch nicht den Schluß, daß auch der Cyclus B über diese Zwischenstufe verlaufen muß.

Da die Palladium-katalysierte Umsetzung von Butadien und Kohlendioxid zum δ -Lacton 3 in Ausbeuten bis zu 59% und die Rhodium-katalysierte Reaktion des δ -Lactons mit Butadien zu 44% abläuft, kann das C₁₃-Lacton 10 über diesen Umweg ebenfalls im präparativen Maßstab hergestellt werden. Versuche mit "Zweikomponentenkatalysatoren", die sowohl eine Palladium- als auch eine Rhodiumkomponente enthalten, um zuerst das δ -Lacton zu erzeugen und dieses dann "in situ" in das C₁₃-Lacton zu überführen, waren nicht erfolgreich. Der Grund hierfür ist die Tatsache, daß der erste Reaktionsschritt als Katalysatorliganden z.B. PiPr₃ benötigt, der zweite Schritt hingegen ausschließlich mit PEt₃ verläuft.

Bei einem "in situ"-Gemisch der beiden Liganden werden die Übergangsmetallzentren jedoch zwangsläufig durch den jeweils "falschen"-Liganden blockiert.

Umsetzungen weiterer Diene mit Kohlendioxid

Mit den Katalysatoren, die in guten Ausbeuten die Butadien-Kohlendioxid-Reaktion katalysieren, konnten weder Isopren noch Piperylen (1,3-Pentadien) mit Kohlendioxid umgesetzt werden. Als möglich erwiesen sich jedoch gemeinsame Verknüpfungen des Isoprens bzw. Piperylens mit Butadien und Kohlendioxid unter Bildung der neuen Lactone 32, 34 und 36 (vgl. Schema 5).

Schema 5

Bei der Palladium-katalysierten Umsetzung des Isoprens mit Butadien wird sowohl ein Produkt mit Kopf-, als auch eines mit Schwanz-Verknüpfung des Isoprens gebildet. Als mechanistische Zwischenstufen sind deshalb zwei Bis(η^3 allyl)palladium-Komplexe mit der zusätzlichen Methylgruppe in 2- bzw. 3-Position zu formulieren. Bei dem folgenden Einschub des Kohlendioxids ist bemerkenswert, daß die Insertion in beiden Fällen in die Allylgruppe erfolgt, die aus dem Butadien gebildet wurde. Eine Insertion in die methylsubstituierte, elektronenreichere Allylgruppe wird nicht beobachtet, die zu den Produkten 33 und 35 führen müßte.

Bei der Reaktion zwischen Piperylen, Butadien und Kohlendioxid wird nur das Schwanz-verknüpfte Produkt 36 beobachtet. Eine Kopf-Verknüpfung, die zu den Lactonen 38 und 39 führen würde, tritt nicht auf. Ebenfalls erfolgt der Kohlendioxid-Einschub, vollkommen analog den Isopren-Produkten, ausschließlich an der nichtsubstituierten Allylgruppe, so daß auch das Isomere 37 nicht gebildet wird. Bei der Umsetzung zwischen Isopren, Butadien und Kohlendioxid wurde der Einfluß des Eduktverhältnisses Isopren/Butadien auf die Selektivität genauer untersucht. Abb. 5 zeigt, daß ein hoher Überschuß an Isopren zu einer deutlichen Selektivitätsverbesserung in bezug auf die Zielprodukte 32 und 34 führt. Bei einem Isopren-Butadien-Verhältnis von 15:1 wurden diese beiden Lactone mit einer Gesamtselektivität von 88% gebildet.

Abb. 5. Einfluß des Isopren-Butadien-Verhältnisses auf die Selektivität S der Bildung von 32 + 34 und 3

Die Ausbeuten dagegen sind, verglichen mit der Palladium-katalysierten Umsetzung von Butadien mit Kohlendioxid, gering. Sie sind weitgehend unabhängig von dem gewählten Isopren-Butadien-Verhältnis und liegen bei 5%.

Wir danken der Deutschen Forschungsgemeinschaft und der Friedrich-Ebert-Stiftung für die finanzielle Unterstützung und der Degussa AG, Hanau, für die großzügige Bereitstellung der Palladium-, Rhodium- und Rutheniumsalze. Unser Dank gilt Frau E. Richter für die Unterstützung bei den experimentellen Arbeiten, Frau M. Sistig, Herrn B. Dederichs und Herrn W. Falter für die Aufnahme der Kernresonanzspektren und Massenspektren, Frau E. Kirchner und Frau A. Bormann für die Durchführung der GC-Analysen und Herrn Dr. W. Meltzow für die Mithilfe in vielen gaschromatographischen Fragen. Herrn Prof. Dr. W. Keim danken wir für die zahlreichen wertvollen Anregungen und Diskussionen.

Experimenteller Teil

Infrarotspektren: Kapillar (Flüssigkeiten) bzw. KBr-Preßlinge (Feststoffe), Perkin-Elmer 782 Spektrometer. – Massenspektren: EI-Technik (70 eV, 0.7 mA), Varian MAT 112 GC/ MS-System, Datenerfassung mit dem Gerät Varian MAT 200 S. – ¹H-NMR-Spektren: 90 MHz, Varian EM 390, interner Standard Tetramethylsilan. – ¹³C- und ³¹P-NMR-Spektren: Bruker CXP 200, Tetramethylsilan interner Standard bei ³¹C-NMR, 85proz. H₃PO₄ extern bei ³¹P-NMR. – Elementaranalytik: Carlo Erba Elemental Analyzer 1106. – Atomabsorption: Varian 1100 AAS-Spektrometer. – Substanzisolierung: Präparativer Gaschromatograph Hupe APG 402, 2 m × 2 cm 20% Silicon DC 200 auf Gaschrom P 45/60 mesh, 230°C Säulentemperatur, 1.0 bar Stickstoff-Vordruck. – Produktzusammensetzungen: GC-Analyse (Carlo Erba 2300 AC), 100 m OV 101 Glaskapillare (Butadien/CO₂-Produkte) bzw. 60 m WG 11 Glaskapillare (Isopren bzw. Piperylen/Butadien/CO₂-Produkte), Trägergas

Stickstoff, Vordruck 2.0 at, Temperaturprogramm 120 bis 230°C, 6 min isotherm, Aufheizrate 5°C/min, Flammenionisationsdetektor, Integrationssystem Spectra Physics SP 4000.

Allgemeine Vorschriften zur Umsetzung von 1,3-Dienen mit Kohlendioxid: Alle Verfahrensschritte bis auf die Aufarbeitung der Reaktionsprodukte wurden unter nachgereinigtem Argon durchgeführt. In einem typischen Experiment wurden 0.16 mmol Metallkomponente, 0.48 mmol Ligand, 30 ml Lösungsmittel, 250 mmol Butadien (oder Butadien/Dien-Gemische) und 300 mmol Kohlendioxid in einem 75-ml-Stahlautoklaven miteinander umgesetzt. Bei Palladium-, Nickel- und Rutheniumkatalyse wurde 15 h bei 90°C gerührt; bei Rhodiumkatalyse waren etwas höhere Reaktionstemperaturen (120°C) und längere Reaktionszeiten (24 h) erforderlich. Nach der Reaktion wurde der Autoklav gekühlt, über ein Reduzierventil entspannt und die Rcaktionslösung nach Abtrennen von nicht umgesetztem Dien und Kohlendioxid gewogen und gaschromatographisch analysiert.

Die Umsetzungen zwischen dem δ -Lacton 3 und Butadien wurden vollkommen analog durchgeführt.

Katalysatoren

Nach Literaturvorschriften wurden hergestellt: $Pd(acac)_{2}^{44}$, $Pd(hfacac)_{2}^{45}$, $[Pd-(C_{3}H_{5})Cl]_{2}^{46}$, $[Pd(C_{3}H_{5})(OAc)]_{2}^{47}$, $[Pd_{2}(hfacac)_{2}(C_{8}H_{12})]^{25}$, $Pd_{2}(OAc)_{2}(C_{8}H_{12})^{25}$, $[Pd-(OAc)_{2}]_{3}^{48}$, $[Pd(PPh_{3})_{4}]^{49}$, $[Pd(C_{8}H_{12})(C_{5}H_{5})]BF_{4}$ und $[Pd(C_{8}H_{12})(C_{3}H_{5})]BF_{4}^{50}$, Ni- $(COD)_{2}^{51}$, $RuH(OAc)(PPh_{3})_{3}$ und $RuH_{2}(PPh_{3})_{4}^{52}$, $RuH(OAc)(PPh_{3})_{2}^{53}$, $RuH_{2}(CO)-(PPh_{3})_{3}^{54}$, $Ru(acac)_{3}^{55}$, $Rh(C_{2}H_{4})_{2}acac^{56}$, $[Rh(COD)(PPh_{3})_{2}]PF_{6}^{57,58}$, $[Rh(C_{3}H_{5})_{2}acac]^{59}$, $[Rh(C_{3}H_{5})_{2}Cl]_{2}^{59}$, $[Rh(C_{3}H_{5})_{2}(OAc)]_{2}^{59}$, $RhPh(PPh_{3})_{3}^{60}$, $Rh(OPh)(PPh_{3})_{3}^{60}$.

Produkte der Isopren/Butadien/CO₂-Umsetzung

6-Ethenyl-3-ethylidentetrahydro-6-methyl-2H-pyran-2-on (2-Ethyliden-5-methyl-6-hepten-5-olid) (32): IR: 3045 (=CH), 2980 (R₃CH), 2940 (CH₃), 1715 (C=O), 1640 (C=C), 1270 (C-O), 1145 (C-O), 980 cm⁻¹ (RCH=CH₂). - ¹H-NMR (CDCl₃): δ = 7.1 (q, 1H, CH₃CH=C), 5.65-5.95 (m, 1H, H₂C=CH-C), 5.05-5.35 (m, 2H, H₂C=CH-C), 2.45 (m, 2H, CH₂-C-C=O), 1.75-1.95 (m, 5H, O-C-CH₂CH₂ und CH₃CH=), 1.45 (s, 3H, CH₃-C). - ¹³C-NMR (CDCl₃): δ = 166.2 (C=O), 140.8 (CH₂=CH-C), 135.2 (CH₃-CH=C), 125.2 (CH₃CH=C), 114.4 (CH₂CHC), 81.6 (O=C-O-C), 31.8 (O-C-CH₂), 27.4 (CH₃-C), 20.1 (O-C-CH₂-CH₂), 13.9 (CH₃-CH=C). - MS: m/z = 166 (3.7%, M⁺), 152 (3), 151 (29), 139 (5), 138 (15), 137 (5), 123 (14), 121 (13), 107 (9), 97 (7), 96 (100), 95 (14), 93 (14), 91 (7), 81 (28), 79 (12), 68 (72), 67 (68), 55 (13), 55 (64), 54 (13), 53 (23), 43 (65), 41 (29), 40 (15), 39 (35), Fragmentzuordnungen vgl. Schema 6.

3-Ethylidentetrahydro-6-(1-methylethenyl)-2H-pyran-2-on (2-Ethyliden-6-methyl-6-hepten-5-olid) (34): IR: 3045 (=CH), 2975 (R₃CH), 2924 (CH₃), 2860 (O-CH), 1715 (C=O), 1640 (C=C), 1255 (C-O), 1145 cm⁻¹ (C-O). - ¹H-NMR (CDC_{13}) : $\delta = 7.1$ (q, 1H, CH₃CH=C), 5.0 (dd, 2H, $H_2C=C$), 4.68 (dd, 1H, OCH), 2.5 (m, 2H, $CH_2-C-C=O$), 2.0 (m, 2H, $O-CH-CH_2$, 1.72-1.85 (m, 6H, CH₃CH=C und CH₃C=CH₂). - ¹³C-NMR (CDCl₃): $\delta = 166.2$ (C=O), 140.7 (CH₂=C-C-O), 135.2 (CH₃CH=C), 125.2 (CH₃CH=C), 114.4 $(CH_2 = C - C - O),$ 81.5 $(O - CH - CH_2 - CH_2),$ 26.2 $(O-CH-CH_2-CH_2)$, 22.1 $(O-CH-CH_2-CH_2)$, 18.0 $(CH_3C=CH_2)$, 13.9 $(CH_3CH=C)$. - MS: m/z = 166 (5.5%, M⁺), 152 (2), 151 (19), 148 (2), 139 (7), 138 (77), 124 (14), 123 (33), 109 (17), 97 (19), 96 (88), 95 (36), 91 (8), 82 (9), 81 (45), 79 (13), 69 (21), 68 (100), 67 (99), 55 (28), 54 (28), 53 (38), 43 (24), 42 (13), 41 (73), 40 (30), 39 (55), Fragmentzuordnungen vgl. Schema 6.

Produkt der Piperylen/Butadien/CO₂-Umsetzung: Wie in Schema 5 gezeigt, können je nach Verknüpfung der Edukte theoretisch vier verschiedene Isomere entstehen. Bei der gaschromatographischen Analyse konnte jedoch nur ein Produkt nachgewiesen werden, das aufgrund

der geringen Ausbeute nicht als Reinsubstanz zu isolieren war. Zur Unterscheidung, um welches der Isomere 36-39 es sich bei diesem Produkt handelt, wurde das per GC/MS-Messung erhaltene Massenspektrum herangezogen und mit den schon bekannten Massenspektren der δ -Lactone 3, 32 und 34 verglichen. Eine Gegenüberstellung der Fragmentierungen befindet sich in Schema 6.

Schema 6

Anhand dieses Spektrenvergleiches ist dem Piperylen/Butadien/CO₂-Produkt die Struktur 3-Ethylidentetrahydro-6-(1-propenyl)-2H-pyran-2-on (2-Ethyliden-6-octen-5-olid) (36) zuzuordnen. Dafür sprechen folgende Gründe: In den Lactonen 3 und 32 ist das Fragment m/z = 67 der Basispeak. Bei einer gegenüber 3 zusätzlichen Methylgruppe in β - (Lacton 39) oder γ -Stellung (Lacton 37 und 38) zur Ketogruppe müßten aufgrund der bekannten Fragmentierungsschemata die Fragmente m/z = 110 (96 + 14) und 81 (67 + 14) mit hohen Intensitäten auftreten, was jedoch nicht beobachtet wird. Ebenfalls ist das Auftreten des C₃H $\frac{1}{5}$ -Ions (m/z = 41) mit einer relativen Intensität von 63% typisch für die Abspaltung der Allylgruppe des Lactons 36. Weitere Fragmente des Massenspektrums von 36 sind m/z = 166 (16%, M⁺), 151 (13), 138 (48), 123 (24), 109 (15), 96 (77), 68 (97), 67 (100), 53 (34), 41 (64), 39 (62).

Bis(2-ethyliden-4,6-heptadienoato)bis(triisopropylphosphan)palladium (22): 2.76 g (9.0 mmol) Pd(acac)₂, 2.88 g (18 mmol) PiPr₃ und 1.37 g (9.0 mmol) 3 werden in einem 250-ml-Glasautoklaven in 100 ml Acetonitril ca. 6 h bei 90°C gerührt, bis eine weinrote Färbung eintritt. Nach Einengen der Reaktionslösung bei Raumtemp. i. Vak. auf 25 ml und Abkühlen auf -25°C fällt ein blaßgelber Feststoff aus, der mit kaltem Diethylether gewaschen und aus Acetonitril umkristallisiert wird. Nach Trocknen i. Vak. bei 10 µbar werden 2.0 g (30.5%) 22, Schmp. 109°C, erhalten.

C₃₆H₆₄O₄P₂Pd (728.9) Ber. C 59.32 H 8.85 O 8.78 P 8.50 Pd 14.55 Gef. C 59.27 H 9.02 O 8.52 P 8.54 Pd 14.40

Die Zuordnungen im ¹H-NMR-Spektrum von 22 (Tab. 8) wurden durch Entkopplungsexperimente gestützt. Bei Einstrahlung in das Signal der Protonen g bei 3.28 ppm vereinfacht sich das Multiplett des Protons h zu einem Dublett. Einstrahlen in das Signal von Proton b vereinfacht das Multiplett der a-Protonen bei $\delta = 1.28 - 1.38$. Nach dem ¹H-NMR-Spektrum liegt 22 in der *trans*-Form vor. Die Methylgruppen des Triisopropylphosphans zeigen im Vergleich zum unkomplexierten Triisopropylphosphan eine zusätzliche Aufspaltung, die durch Kopplung mit den Phosphoratomen hervorgerufen wird. Diese Kopplung ist nur dann zu beobachten, wenn $J_{P,P}$ sehr groß ist. Da *trans*-Komplexe immer große Kopplungskonstanten im Bereich von 350-550 Hz aufweisen, während bei *cis*-Komplexen $J_{P,P}$ nur 0-10 Hz beträgt, muß 22 in der *trans*-Form vorliegen.

Das ¹³C-NMR-Spektrum (Tab. 8) zeigt elf scharfe Signale (a – h), die auf eine isomerenfreie Verbindung deuten. Die chemische Verschiebung des Kohlenstoffatoms c von $\delta = 171.7$ stimmt überein mit den in der Literatur für Carboxylate angegebenen Werten.

Tab. 8. ¹H- und ¹³C-NMR-Daten des Komplexes 22

δ(ppm)	¹ H-NMR Multipl.	nH	Signal	δ(ppm)	¹³ C-NMR Multipl.	Signal
6.84	a	1	e	171.7	S	с
6.1 - 6.4	m	2	i, i	137.3	d	i
5.7 - 5.9	m	1	h	135.1	s	d
4.9 - 5.1	m	2	k	133.2	*)	e
3.28	d	2	g	132.9	*)	h
2.0 - 2.1	m	3	Ď	130.2	*)	i
1.55	d	3	f	114.4	t	, k
1.28-1.38	m	18	a	30.1	t	g
				23.1	d	Ď
				19.4	q	а
				14.1	q	f

*) Multiplizität wegen Überlagerung nicht zu erkennen.

IR: 3085 (C=CH), 2960, 2925, 2870 (C-H), 1650 (C=C), 1605 (COO) cm⁻¹. - ³¹P-NMR: Singulett bei 34.1 ppm.

Im Massenspektrum von 22 tritt das Molekül-Ion nicht auf, sondern es erfolgt eine Abspaltung beider Carboxylatgruppen. Im Massenspektrum erscheinen Gruppen von sechs Signalen, die der Palladium-Isotopenverteilung von m/z = 102 (1%), 104 (11%), 105 (22%), 106 (27.3%), 108 (26.7%) und 110 (11.8%) entsprechen. Charakteristische Signalgruppen sind in Tab. 9 angegeben.

m/z	Fragment	m/z	Fragment		
422-430	$Pd(PiPr_3)^+_2$	180	Pd(PiPr) ⁺		
379 - 387	$Pd(PiPr_3)(PiPr_2)^+$	160	$M^{+}(PiPr_{3})$		
341 - 346	$Pd(PiPr_3)(PiPr)^+$	152	M ⁺ (Carboxylat-Rest)		
297 - 306	$Pd(PiPr_3)(P)^+$	118, 76, 75, 43	Fragmente von PiPra		
257-266	Pd(PiPr ₃)+	137, 107, 93, 91, }	Fragmente des		
221 - 227	$Pd(PiPr_{2})^{+}$	55. 41	Carboxvlat-Restes		

Tab. 9. Massenspektrum des Komplexes 22

¹⁾ A. Behr, Chem.-Ing.-Techn. 57, 893 (1985).

- ²⁾ A. Behr in Catalysis in C₁ Chemistry (W. Keim), S. 169, Reidel Publ., Dordrecht 1983.
- ³⁾ A. L. Lapidus, S. D. Pirozhkov und A. A. Koryakin, Bull. Akad. Sci. USSR, Div. Chem. Sci. 1978, 2513.
- ⁴⁾ Y. Inoue, Y. Itoh und H. Hashimoto, Chem. Lett. 1978, 633.
- ⁵⁾ Y. Inoue, Y. Itoh, H. Kazama und H. Hashimoto, Bull. Chem. Soc. Jpn. 53, 3329 (1980).
- ⁶⁾ P. Albano und M. Aresta, J. Organomet. Chem. 190, 243 (1980).
- ⁷⁾ Y. Inoue, T. Hibi, M. Satake und H. Hashimoto, Chem. Commun. 22, 982 (1979).
- ⁸⁾ A. Döring und P. W. Jolly, Tetrahedron Lett. 1980, 3021.
- 9) Y. Sasaki, Y. Inoue und H. Hashimoto, Chem. Commun. 1976, 605.

- ¹⁰⁾ Y. Inoue, Y. Sasaki und H. Hashimoto, Bull. Chem. Soc. Jpn. 51, 2375 (1978).
- ¹¹ A. Musco, J. Chem. Soc., Perkin Trans. 1 1980, 693.
 ¹² T. Ito, Y. Kindaichi und Y. Takami, Nippon Kagaku Kaishi 9, 1276 (1979).
- ¹³⁾ Imperial Chemical Industries (Erf. J. A. Daniels), Eur. Pat. Appl. 50.445 (28. April 1982).
- 14) A. Behr, K.-D. Juszak und W. Keim, Synthesis, 1983, 574.
- ¹⁵⁾ A. Behr und K.-D. Juszak, J. Organomet. Chem. 255, 263 (1983).
- ¹⁶⁾ A. Behr und R. He, J. Organomet. Chem. 276, C 69 (1984).
- ¹⁷⁾ W. Keim, A. Behr und M. Röper in Comprehensive Organometallic Chemistry (G. Wilkinson), Kap. 52, Bd. 8, S. 371, Pergamon Press, Oxford 1982.
- 18) A. Behr in Aspects of Homogeneous Catalysis (R. Ugo), Bd. 5, S. 3, Reidel Publ., Dordrecht 1984.
- ¹⁹⁾ C. A. Tolman, J. Am. Chem. Soc. 92, 2953 (1970).
- 20) T. Bartik, T. Himmler, H.-G. Schulte und K. Seevogel, J. Organomet. Chem. 272, 29 (1984).
- ²¹⁾ C. A. Tolman, J. Am. Chem. Soc. 92, 2956 (1970).
- ²²⁾ C. A. Tolman, Chem. Rev. 77, 313 (1977).
- ²³⁾ P. Braunstein, D. Matt, J. Fischer, L. Ricard und A. Mitschler, Nouv. J. Chim. 4, 493 (1980).
- ²⁴⁾ P. Braunstein, D. Matt, Y. Dusausoy, J. Fischer, A. Mitschler und L. Ricard, J. Am. Chem. Soc. 103, 5115 (1981).
- ²⁵⁾ A. Behr, G. v. Ilsemann, W. Keim, C. Krüger und Y.-H. Tsay, Organometallics, im Druck.
- ²⁶⁾ C. Reichardt, Solvent Effects in Organic Chemistry, Verlag Chemie, Weinheim 1979.
- ²⁷⁾ R. A. Walton, Q. Rev., Chem. Soc. 19, 126 (1965).
- 28) J. A. Davies und F. R. Hartley, Chem. Rev. 81, 79 (1981).
- ²⁹⁾ B. N. Storhoff und H. C. Lewis jr., Coord. Chem. Rev. 23, 1 (1977). 30)
- J. R. Doyle, P. E. Slade und H. B. Jonassen, Inorg. Synth. 6, 218 (1960).
- ³¹⁾ S. Sakaki, H. Kanai und K. Tarama, Can. J. Chem. 52, 2857 (1974).
- ³²⁾ S. D. Ittel, C. A. Tolman, A. D. English und J. P. Jesson, J. Am. Chem. Soc. 100, 7577 (1978).
- ³³⁾ A. D. English und T. Herskovitz, J. Am. Chem. Soc. 99, 1648 (1977).
- 34) T. Tsuda, Y. Chujo und T. Saegusa, Synth. Commun. 1979, 9, 427.
- ³⁵⁾ P. W. Jolly, S. Stobbe, G. Wilke, R. Goddard, C. Krüger, J. C. Sekutowski und Y. H.-Tsay, Angew. Chem. 90, 144 (1978); Angew. Chem., Int. Ed. Engl. 17, 124 (1978).
- ³⁶⁾ R. Santi und M. Marchi, J. Organomet. Chem. 182, 117 (1979).
- ³⁷⁾ T. Ito, Y. Kindaichi und Y. Takami, Chem. Ind. 1980, 83.

- ³⁸⁾ T. Hung, P. W. Jolly und G. Wilke, J. Organomet. Chem. **190**, C 5 (1980).
 ³⁹⁾ A. Behr und G. v. Ilsemann, J. Organomet. Chem. **276**, C 77 (1984).
 ⁴⁰⁾ J. E. Lydon, J. K. Nicholson, B. L. Shaw und M. R. Truter, Proc. Chem. Soc. (London) 1964, 421.
- ⁴¹⁾ B. Henc, P. W. Jolly, R. Salz, G. Wilke, R. Benn, E. G. Hoffmann, R. Mynott, G. Schroth, K. Seevogel, J. C. Sekutowski und C. Krüger, J. Organomet. Chem. 191, 425 (1980). 42) W. Gausing und G. Wilke, Angew. Chem. 93, 201 (1981); Angew. Chem., Int. Ed. Engl. 20,
- 186 (1981).
- ⁴³⁾ P. W. Jolly, Angew. Chem. 97, 279 (1985); Angew. Chem., Int. Ed. Engl. 24, 283 (1985).
- 44) Wacker-Chemie G.m.b.H. (Erf. G. Künstle und H. Siegl), Ger. Offen. 2.402.383 (24. Juli 1975). 45) G. v. Ilsemann, Dissertation, Techn. Hochschule Aachen 1985.
- 46) W. T. Dent, R. Long und A. J. Wilkinson, J. Chem. Soc. 1964, 1585.
- 47) S. D. Robinson und B. L. Shaw, J. Organomet. Chem. 3, 367 (1965).
- ⁴⁸⁾ T. A. Stephenson, S. M. Moorhouse, A. R. Powell, J. P. Heffner und G. Wilkinson, J. Chem. Soc. 1965, 3632.
- 49) D. R. Coulson, Inorg. Synth. 13, 121 (1972).
- ⁵⁰ F. A. Cotton, Inorg. Synth. 13, 59 u. 61 (1972).
 ⁵¹ B. Bogdanović, M. Kröner und G. Wilke, Ann. Chem. 699, 1 (1966).

- ⁵² R. Young und G. Wilkinson, Inorg. Synth. 17, 75 u. 79 (1977).
 ⁵³ A. Dobson, S. D. Robinson und M. F. Uttley, Inorg. Synth. 17, 126 (1977).
 ⁵⁴ N. Ahmad, J. J. Levison, S. D. Robinson und M. F. Uttley, Inorg. Synth. 15, 48 (1974).
- 55) A. Johnson und G. W. Everett jr., J. Am. Chem. Soc. 94, 1419 (1972).
- ⁵⁶⁾ R. Cramer, Inorg. Synth. **15**, 16 (1974). ⁵⁷⁾ J. Chatt und L. M. Venanzi, J. Chem. Soc. **1957**, 4735.
- 58) R. Cramer, J. Am. Chem. Soc. 86, 217 (1964).
- ⁵⁹⁾ J. Powell und B. L. Shaw, J. Chem. Soc. A 1968, 583.
- ⁶⁰⁾ W. Keim, J. Organomet. Chem. 14, 179 (1968).

[191/85]